Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(2-Hydroxy-3-methoxybenzylidene)-2,3,4,6-tetra-O-acetyl- β-D-galactopyranosylamine

Sema Öztürk Yıldırım, ${ }^{\text {a }}$ Mehmet Akkurt, ${ }^{\text {a* }}$ Ali Asghar Jarrahpour, ${ }^{\text {b }}$ Parvaneh Alvand ${ }^{b}$ and Orhan Büyükgüngör ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and ${ }^{\text {c }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139
Samsun, Turkey
Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.035$
$w R$ factor $=0.094$
Data-to-parameter ratio $=9.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{11}$, the pyranosyl ring has a chair conformation. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions are observed as well as intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond contacts.

Comment

The asymmetric Staudinger reaction utilizing 2,3,4,6-tetra- O -acetyl- β-D-galactopyranosylamine and 2,3,4,6-tetra- O-piva-loyl- β-D-galactopyranosylamine as the chiral auxiliary in the synthesis of 2-azetidinones has been reported by Jarrahpour et al. (2004a,b). It has been suggested that the azomethine linkage might be responsible for the biological activities displayed by Schiff bases (Phatak et al., 2000).

(I)

The molecular structure of (I) is shown in Fig. 1. The N1 C7 bond length [1.273 (3) Å] conforms to the expected value for a normal $\mathrm{C}=\mathrm{N}$ bond. The methoxy group at C 2 is rotated slightly around the $\mathrm{C} 2-\mathrm{O} 2$ bond; the torsion angle $\mathrm{C} 8-\mathrm{O} 2-$ $\mathrm{C} 2-\mathrm{C} 3$ is $16.3(4)^{\circ}$. The C7-C6 [1.448 (3)] and N1-C9 [1.435 (3) \AA] bond lengths are consistent with those in a related structure we reported recently (Akkurt et al., 2006). The pyranosyl ring adopts a chair conformation. In the crystal structure, the bond lengths and angles are in normal ranges (Akkurt et al., 2006; Allen et al., 1987).

A packing diagram of (I) is shown in Fig. 2. In the crystal structure, the molecular packing is stabilized by intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (Table 1).

Experimental

o-Vanillin ($0.87 \mathrm{~g}, 5.71 \mathrm{mmol}$) was added to a solution of 2,3,4,6-tetra-O-acetyl- β-D-galactosylamine ($2.00 \mathrm{~g}, 5.76 \mathrm{mmol}$) in ethanol (35 ml). The mixture was refluxed for 5 h . The resulting yellow crystals of N -(2-hydroxy-3-methoxybenzylidene)-2,3,4,6-tetra- O-acetyl- β-d-galac-
topyranosylamine were collected in 90% yield by filtration. The title compound, (I), was recrystallized from ethanol to give prismatic pale-yellow crystals (m.p. 453-455 K). IR (KBr): 3150-3250 (OH), $1751.2(\mathrm{C}=\mathrm{O}), 1635.5(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right): \delta$ 170.43-168.30 (4 C=O), $164.63(\mathrm{C}=\mathrm{N}), 150.79-114.83$ (aromatic carbons), $89.31(\mathrm{C} 3), 72.83(\mathrm{C} 4), 71.40(\mathrm{C} 2), 69.77(\mathrm{C} 6), 68.31(\mathrm{C} 1)$, $61.44(\mathrm{C} 5), 56.07\left(\mathrm{OCH}_{3}\right), 20.69-20.56\left(4 \times \mathrm{COCH}_{3}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 481$, 331, 169, 109, 43.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{11}$
$M_{r}=481.45$
Monoclinic, $P 2_{6}$
$a=8.6855$ (7) A
$b=7.6735$ (5) \AA
$c=18.5577$ (15) A
$\beta=97.124$ (7) ${ }^{\circ}$
$V=1227.29(16) \AA^{3}$
Data collection
Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.934, T_{\text {max }}=0.957$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.303 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Prism, pale yellow } \\
& 0.66 \times 0.55 \times 0.42 \mathrm{~mm}
\end{aligned}
$$

19328 measured reflections 2862 independent reflections 2154 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.102$
$\theta_{\text {max }}=27.2^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.094$
H atoms treated by a mixture of independent and constrained refinement
$S=0.91$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0717 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.12 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} O 1 \cdots \mathrm{~N} 1$	$0.92(4)$	$1.80(4)$	$2.641(3)$	$151(3)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 11^{\mathrm{i}}$	0.93	2.45	$3.342(4)$	160
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 3$	0.93	2.20	$2.607(3)$	105
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 5$	0.98	2.31	$2.684(3)$	102
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 7$	0.98	2.25	$2.675(3)$	105
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.98	2.55	$3.310(3)$	134
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 9$	0.98	2.29	$2.684(4)$	103
$\mathrm{C} 13-\mathrm{H} 13 \cdots 1^{\text {ii }}$	0.98	2.60	$3.557(3)$	167
$\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.96	2.53	$3.422(5)$	155
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{O}^{\text {iv }}$	0.96	2.27	$3.209(5)$	164

Symmetry codes: (i) $-x+1, y-\frac{3}{2},-z+1$; (ii) $x, y+1, z$; (iii) $x, y-1, z$; (iv) $-x+1, y-\frac{1}{2},-z$.

In the absence of significant anomalous dispersion effects, Friedel pairs were merged. The phenol H atom was located in a difference Fourier map and refined freely. H atoms bonded to C were included in calculated positions $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ and refined using a riding-model approximation with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The methyl groups were allowed to rotate but not to tip.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figure 1
A view of (I), showing the atom-numbering scheme and 20% probability displacement ellipsoids.

Figure 2
A packing diagram of (I), viewed along the a axis. For clarity, only those H atoms involved in hydrogen bonds (dashed lines) are shown.

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F. 279 of the University Research Fund). AAJ and PA thank the Shiraz University Research Council for financial support (84-GR-SC23).

References

Akkurt, M., Yıldırım Öztürk, S., Jarrahpour, A. A., Khalili, D. \& Büyükgüngör, O. (2006). Acta Cryst. E62, o2069-o2071.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Jarrahpour, A. A., Shekarriz, M. \& Taslimi, A. (2004a). Molecules, 9, 29-38.
Jarrahpour, A. A., Shekarriz, M. \& Taslimi, A. (2004b). Molecules, 9, 939-948.
Phatak, P., Jolly, V. S. \& Sharma, K. P. (2000). Orient. J. Chem. 16, 493-494.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED 32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

